CS382:Equation-outline

From Earlham CS Department
Revision as of 04:20, 18 February 2009 by Yrosic08 (talk | contribs)
Jump to navigation Jump to search

Abstract

This unit will last for two weeks, and will explore the concepts relating to aerodynamics through the modeling of rocket flights and how the flow of thrust through the nozzle at the end of the rockets affects the flight distance of the rocket. This will require use of simulations that are designed to handle such problems, as well as some explanation about aerodynamics in general.

The Scaffold Approach

The scaffolding approach to this unit is too simplistic at the moment, and I believe that it needs to be expanded on. The 3 basic steps involve the following.


1. Talking about some of the general principles of aerodynamics and how the forces involve effect the flight of various aircraft.

2. Modeling the flight of a rocket or airplane based on lecture content.

3. Actually building a model airplane or rocket and then launching it based on conclusions reached in the simulations based on lecture content.

Inquiry Based Learning

Develops students' understanding of the natural world.

  • The students are making a model which is going to resist gravity, but also be affected by natural happenings like air drag, and possible weather features.


Strengthens students' knowledge of the scientific way of knowing — the use of systematic observation and experimentation to develop theories and test hypotheses.

  • The students will have chance to pre-use computer simulators and software which are going to possibly give them ideas to develop their own ideas about the model and predictions of occurrences throughout the lab.


Emphasizes and provides first-hand experience with both theoretical analysis and the collection of empirical data.

  • The lab will be the main medium of experiencing the real model evolving; and cause of that will be collection of data and students analysis of ones.


Background reading

http://en.wikipedia.org/wiki/Aerodynamics

  • Wikipedia tells it all about the aerodynamics, one should know. Some ideas about modeling could be obtained.


http://en.wikipedia.org/wiki/Wind_tunnel

  • At the lower part of the site - it talks about visualizing the results and the whole simulation of the wind tunnel. Interesting.

=== The two above mentioned wikipedia articles could be used to extract important aspects to introduce students to the basics of the fluid dynamics so that they understand science behind the model easier and better.

http://www.esteseducator.com/Pdf_files/PhysicsCurr.pdf

  • Contains everything that we need.

Lecture notes

Lecture 1: ===Aerodynamics Forces - What they are and what they do

  • Go into a brief review of the previous units, touch on concepts from the earlier topics, and explain how they relate to this unit, I.E. How modeling a rocket is different from modeling a bridge.
  • Explain the basis of the science behind rocket modeling. Introduce them to basic 4 forces that affect an object flying through the air : drag, lift, thrust and gravity; and what's is their role in the whole unit concept.
  • As the simulation applets are somewhat counter-intuitive and the abbreviations and acronyms are gibberish unless one is familiar with the subject already, I believe that it's especially important to explain what some of these variables mean, how they come into play, and just generally prepare the class to use the software associated with the lab.
    • Attached to the above explanation; briefly introduce Lab activity-and how it works.

Lecture 2:

Newton's Laws of motion - How they Govern the movement of objects

  • Introduce Newton's Laws of Motion which govern the movement of all objects on Earth and in space.
  • Describe and demonstrate the effects of the three Laws of motion on moving objects.
  • Introduce and use the vocabulary related to rocket flight.

Lecture 3:

Introducing Model Rockets -How Rockets Are constructed: the effects of aerodynamics Forces

  • Introduce students to the parts and functions of a model rocket
  • Describe the phase of a model rocket flight and relate each phase to the aerodynamic forces at work.
  • Introduce and use the vocabulary related to rocket flight. (new terms of course)

Lecture 4:

The Laws of motion - Putting them together with model rockets

  • Relate Laws of Motion to model rocket engines and to the flight sequence of a model rocket
  • Finishing notes about model water rocket construction and its flight
  • Note how important it is to build precise model and to be careful craftsman when constructing one of these models
  • Introduce and use the vocabulary related to rocket flight. (final look at it)

Classroom response questions

  • If the unit includes a significant portion based on airplanes, after an explanation of some of the forces acting upon the plane, show students a picture of an airplane wing and ask them exactly how it works to allow the airplane to stay in flight.
  • Question 2
  • Question 3

Lab activity

Note: I believe that it may be prudent to follow the same structure as the preceding unit with this one. That is to say the first lab is a concept / developmental stage in which the students use software provided to simulate something covered in the unit, then to go out and actually do it based on the results of their simulations. That being said:

  • The First Lab would consist of the students using rocket simulators to simulate the launching of a water rocket. This provides an excellent opportunity for a tie-in, as we could have them use the current weather station data for the conditions of the launch.
  • The Second Lab would potentially consist of the students building a real version of the rocket they simulated and actually launching them. The possible problems and benefits of this are outlined in the "Physical Models" part of this section.

Simulations



Rockets

Rocket Modeler II

  • This will simulate several different types of Rockets, Air-propelled, Water-propelled, and Solid Fuel propelled, and contains a "Ballistic" option. Has numerous slide bars that can adjust things such as the length, width, tail, fuel content, etc. of the Rocket. Also allows you to determine the angle of launch and the launch conditions, as well as simulating different launch locations such as the Moon and Mars.
  • If we do a lab that involves actually building a rocket, this could give students an idea of what to expect, given the physical statistics of their rocket, as well as the conditions under which the rocket is launched.


Rocket Thrust Simulator

  • Simulates the amount of thrust generated based on a number of variables, including type of fuel used, the size of the nozzle, and the altitude of the rocket, as well as the pressure on the fuel that is being generated.


Atmospheric Effects Simulator

  • Simulates atmospheric effects.


The 3 basic simulators of the rocket flight - a rocket model. Besides computer simulation, there could be guides followed up to manufacture a real life water rocket (e.g.) which could fly around; possible lab.


Physical Models



We're interested in possibly having students construct a physical water rocket. However, while it would be a great way to approach the subject matter in the unit a hands-on fashion, there are potential safety concerns about launching water rockets on campus, and potential logistical issues with finding a remote location to launch the rockets from.

Additionally, the materials for this could potentially be rather expensive.