HIP:PosterSession

From Earlham CS Department
Revision as of 15:35, 10 October 2008 by Dylanp (talk | contribs)
Jump to navigation Jump to search

KECK Project Narrative

Abstract

Computer Science will have four distinct roles in this W. M. Keck project. First, we will be designing and building field-deployable remote monitoring systems for the on-campus study plot. These will be small, solar powered, single-board computer based units with the capability to monitor, record, and up-load temperature, pH (digital), conductivity, redox potential, pressure, and nitrate levels. This will make current data available to any campus-linked computer system for classroom or laboratory use, for archiving and for model development and testing. These developments will build on existing work that the Hardware Interfacing Project, one of our student/faculty applied computer science groups, has done with field-deployable weather stations.


The primary role of the Computer Science division of the W. M. Keck project is to design and build field-deployable remote monitoring systems for the on-campus study plot. These will be small, solar powered, single-board computer based units with the capability to monitor, record, and up-load temperature, pH (digital), conductivity, redox potential, pressure, and nitrate levels. This will make current data available to any campus-linked computer system for classroom or laboratory use, for archiving and for model development and testing. These developments will build on existing work that the Hardware Interfacing Project, one of our student/faculty applied computer science groups, has done with field-deployable weather stations.


The primary role of this project is to design and build field-deployable remote monitoring systems for the on-campus study plot. We, the Hardware Interfacing Project, have finished field-deployable water monitoring devises, which are small, solar powered, single-board computer based units with the capability to monitor, record, and up-load temperature, pH (digital), conductivity, redox potential, and etc. During the summer in 2008, we made field trips at springwood lake in Richmond, IN, and we monitored the water quality with our exciting tools. These devises will make current data available to any campus-linked computer system for classroom or laboratory use, for archiving and for model development and testing. --Mikio, 07 Oct 2008, 1:55 pm

The primary role of this project is to design and build field-deployable remote monitoring systems for the on-campus study plot. We, the Hardware Interfacing Project, have finished field-deployable water monitoring devices, which are small, solar powered, single-board computer based units with the capability to monitor, record, and upload temperature, pH (digital), conductivity, redox potential, and similar data to a database accessible anywhere on-campus. During the summer of 2008, we made field trips to springwood lake in Richmond, IN, and we sampled the water quality with our exciting tools. These devices will continuously upload the latest data for archiving, laboratory use, and for model development and testing. -- Dylan 10 Oct 2008 4:36 PM