Keck Foundation LOI

From Earlham CS Department
Revision as of 08:34, 20 January 2006 by BarbaraG (talk | contribs) (5) Justification for why Keck and not some other funding source)
Jump to navigation Jump to search

1) Introduction

Earlham College requests $354,400 to develop multidisciplinary science curriculum modules and summer research projects focusing on a common environmental issue. This project will emphasize collaboration among the natural and physical sciences departments at Earlham College, including biology, chemistry, computer science, geosciences, and mathematics. It is clear that cutting-edge scientific research is becoming increasingly multidisciplinary and collaborative at all levels; therefore, it is essential to train our students to develop multi-faceted approaches to problem solving. This project will introduce an important scientific problem and ask students to collect and analyze data, as well as make interpretations, using different disciplinary perspectives in both coursework and independent research projects with faculty. We believe this idea of collaborative learning will transform our undergraduate curriculum in the sciences and provide a model for collaborative programs among the sciences at other liberal arts colleges.

A grant from the Keck Foundation, together with support from Earlham College, would support a modest amount of equipment and a three year program of development and initial offerings of the curriculum modules including a summer research component. The curriculum modules will be created for both introductory and upper-division science courses in geoscience, chemistry, computer science, biology, mathematics, and environmental science. The three methods (field, laboratory, and computational) will be integrated in the modules such that students at all levels will experience first hand how modern scientific inquiry is carried out using multidisciplinary approaches.

Our choice of metals in the environment will generate module and research topics centered around faculty expertise, student interest, and local impact. We anticipate that following the scientific and pedagogical success of this initial topic, we would further develop this current as well as additional topics to reflect the changing interests of students, faculty, and the community.

Local physical aspects

  • The environmental impact of agriculture, local industry and geology on ground water sources would be studied using quantitative analysis of metal uptake in different trophic levels including bioaccumulation studies in plant and aquatic life and computational modeling of aqueous speciation to assess bioavailability. The study sites will include a local plot developed on-campus, conveniently located within walking distance of classrooms, as well as Springwood Lake, a small Richmond lake with documented pollution impacts from previous industrial activity. Recently, an Earlham student (Graham, 2003) demonstrated a pronounced increase in metals concentrations with depth in Springwood Lake sediments.

Computational science

  • Computational methods are now an important part of basic research in all of the natural sciences, yet few undergraduate programs have such components. Earlham is very well positioned to develop a template for incorporating computational methods into science curricula, e.g. our multidisciplinary approach, the high percentage of our graduates that go on to earn Ph.D.s in the sciences, and our existing computational science research program.

2) Description

Course curriculum module development

Curriculum modules relevant to this proposal will be incorporated into six introductory courses in five departments in the Sciences with a total enrollment of approximately 310 students per year. XXX% of Earlham Students will have taken one of these courses by the time they have graduated. Additionally, curriculum modules will be incorporated into seven upper-level courses in Chemistry, Geology, and Computer Science.

Introductory Course Modules

To illustrate how traditional topics can be introduced in an innovative way into an introductory course using this environmental project as a unifying theme, we propose to incorporate a new environmental chemistry component into our general chemistry class (typical enrollment of 90). This unit will introduce students to fate and transport modeling of metals by measuring the distribution coefficient, Kd, which is a common parameter used to estimate the concentration of metal pollutants in aqueous systems. Kd is a measure of the chelating ability of the soil in a soil-water mixture. A distribution coefficient for copper has previously been measured in a standardized soil material1, and the procedure will be adapted to soils collected from our study sites. The module will be conducted over two laboratory periods. The first week will consist of a spectroscopy lab, where the students will be introduced to atomic and molecular absorption spectroscopy for the determination of the metal concentration in water, and to infrared spectroscopy for the characterization of soil components.

In the second week, students will use atomic spectroscopy to determine Kd of one or more metals in both standard soils, as well as soils collected from both Springwood Lake and our on campus test site. The effect of pH on Kd will also be investigated for the soils. The results will be used to discuss such environmental issues as acid rain and metal mobilization. The soil Kd results will be compiled in a database for use in fate and transport modeling.

Dunnivant, F.M.; Kettel, J., "An Environmental Chemistry Laboratory for the Determination of a Distribution Coefficient", J. Chem. Ed. 79(6), 2002, 715-717.

Upper Division Course Modules

Geosciences

Hydrogeology, a course in the Geosciences Department, serves to illustrate application of our curricular approach to an upper-level offering. The 1 to 3 week modules developed for hydrogeology will result in the complete characterization of the hydrogeologic setting of both the on campus research plot and Springwood Lake. For the on campus plot, characterization will entail installation of several analysis-grade ground water monitoring wells, suction lysimeters and multi-level piezometers. The hydraulic properties of the subsurface will be calculated on the basis of constant head slug tests and constant discharge pumping stress tests and monitoring points will be chemically characterized to establish background conditions prior to experimental metal dosing. Total metal concentrations will be quantified by Inductively-Coupled Plasma spectrometry (ICP) and aqueous species distributions will be modeled using a public-domain equilibrium speciation model (e.g. MINTEQA2,PHREEQC). Hydrogeology students will be engaged in all facets of the subsurface investigation, aquifer property determination and sample collection. Students in other courses will cooperatively engage with Hydrogeology students to develop the protocols for running the environmental fate experiments, chemical analyses and equilibrium speciation modeling.

For Springwood Lake, previous and on-going investigations by Industrial concerns and Municipal and State Regulatory agencies have developed a library of data, including that from many existing monitoring wells in the area. Complete hydrogeological characterization of Springwood Lake will require students to compile and evaluate extant subsurface and hydraulic data to identify data gaps and perform the sampling required to fill them.

Summer Research

Overall, we propose that the summer research component of this project will involve an annual average of six faculty and twelve students over three summers. Research projects will be carried out in chemistry, biology, geosciences and computer science.

Chemistry

Initial work in the chemistry department will center on the collection, sample preparation and analysis of metals in a variety of environmental matrices as well as the development and implementation of metal speciation protocols. Additional research projects will include investigation of the redox chemistry of soil, characterization of the metal ligand complexes present in these soils/leachates and synthesis of metal chelating ligands for use in soil studies and linking to nanoparticles for detection of metals. Chemistry will also collaborate in the implementation of remote monitoring of chemical species (such as pH, dissolved oxygen, ion specific electrodes...).

Biology

Initial work in the biology department will include the sampling of aquatic biota (macropthytes and animals) in Springwood Park Lake in order to describe and quantify the food chains, evaluate the extent of bioaccumulation of metals by those organisms, and assess the rates of biomagnification occuring in higher trophic levels.

Geosciences

Computer Science

Development, deployment, and management of the field monitoring equipment.

Professional Development Workshops

This project also aims to increase the breadth of knowledge of each of the participating faculty in the other core disciplines. Week-long professional development workshops for the faculty involved in the project will be held each summer. Possible topics include: computational science and modeling methods, environmental geology and hydrology, analytical laboratory techniques, and bioavailability, toxcity, and bioaccumulation of metals.

3) Purposes, Aims, and Impact

The purpose of this project is not only to bridge the gap between scientific research and science education by incorporating research modules into courses and encouraging summer research activity, but also to introduce students to the different disciplinary perspectives that can be used to approach scientific problems. In addition to using multidisciplinary approaches and techniques in courses and research as previously described, we will also institute a series of seminars offered at multiple levels taken by small groups of interested students who are also enrolled in one of the courses with a research project module. In these small groups, students will discuss and present the work their class is pursuing on the topic, and students will do weekly readings and assignments meant to broaden their understanding of the nature of modern, multidisciplinary science.

In addition to impact on the Earlham curriculum, this project will also have an impact on the local community. Since all projects will be grounded in scientific issues important to our local and regional environment, we will hold a yearly poster session open to our community in which students will present aspects of their projects linking them into a larger scientific and social context. We believe this innovative approach, combining classroom scientific inquiry, summer research projects, multidisciplinary discussion, and community participation, will give our students a unique opportunity to engage in truly collaborative science.

4) Timetable

3 years, full summer of activity in 2007 through spring semester 2010.

Timeline Summary for Keck Funds:

January 2007-June 2007 Purchase and installation of equipment

June 2007 – August 2007 Course module development; faculty/student research

August 2007-May 2008 Initial implementation of course modules

June 2008-August 2008 Course module development, faculty/student research

August 2008-May 2009 Continued implementation of course modules

June 2009 – August 2009 Course module development, faculty/student research

August 2009-May 2010 Finial implementation of course modules

In 2010, Earlham will be in the final stages of a capital campaign that will provide an endowment for sustainable summer science research. This will allow continued research in this and expanded topics.

5) Justification for why Keck and not some other funding source

The costs involved in the proposed interdisciplinary science research and curriculum development project exceed the capacity of the Earlham College operating budget. In order to plan, implement and evaluate this project, we must secure outside funding. Private and government funding sources for interdisciplinary projects are few and far between. Even then, many focus on one core discipline with collaborative disciplines radiating from the core. In addition, most are targeted toward large research universities, and not at undergraduate colleges and liberal arts institutions.

By reviewing W.M. Keck Foundation funded projects, we believe that Keck places a high value on research at undergraduate colleges and in funding innovative projects. With educational programs that have strength across the full range of the liberal arts and sciences, Earlham has demonstrated unusual strength in the sciences, and stands alongside the undergraduate institutions that have received Keck Support. Because of our shared interest in multidisciplinary projects and the confidence in undergraduate collaborative research, Earlham turns to the W. M. Keck Foundation to seek support.

Appendix A - Budget

                                  Year 1      Year 2      Year 3       Total
PERSONNEL               
  Faculty Salaries and Stipends             
    Summer research              $28,800     $28,800     $28,800     $86,400 
    Workshop facilitators         $3,000      $3,000      $3,000      $9,000 
    Project Coordinator           $3,000      $3,000      $3,000      $9,000 
  Student Stipends                
    Summer research              $38,400     $38,400     $38,400     $115,200 

TOTAL PERSONNEL                                                      $219,600 
                
EQUIPMENT               
  Ultrasonic Nebulizer           $15,000            
  Large freeze drier             $25,000            
  Acid digestion system          $25,000            
  
  Field Monitoring (4 @ $3000per):              
    Temperature             
    PH (digital)               
    Conductivity                
    Redox (reduction oxidation potential)
    Pressure Transducer             
    Nitrate selective probe             
    Computer, packaging, and communications  
  Total Field Monitoring         $12,000            

  Field Sampling:                      
    Lake sediment cores to 2 m              
    Shelby soil cores               
    Monitoring wells (one time install)
    Drawing equipment              
  Total Field Sampling           $15,000
  
  Biology sampling gear           $3,800

TOTAL EQUIPMENT                                                       $95,800 
                
SUPPLIES                
  Per student per year            $1,000             
TOTAL SUPPLIES                   $13,000    $13,000     $13,000       $39,000 
                
GRAND TOTAL                                                          $354,400 

Appendix B - Reviewers

We'll need complete addresses, telephone, and fax

Lew Reilly 
Ursinus College
Department of Physics
Collegeville, PA
	
Scott Brooks - BioGeoChemist
Environmental Sciences Division, POB 2008
Oak Ridge National Laboratory
Oak Ridge, TN  37831

Mic's friend
Oak Ridge National Laboratory
Oak Ridge, TN

Robert M. Panoff, Ph.D.
President and Exececutive Director
Shodor Education Foundation, Inc.
300 W. Morgan St., Suite 1150
Durham, NC  27701  
VOX: +1-919-530-1911  FAX:  +1-919-530-1944
rpanoff@shodor.org

Brock Spencer
Beloit College
Department of Chemistry
Beloit, WI  53511

Biologist?

Bruce Herbert, Professor
Department of Geology and Geophysics
Texas A & M University
MS 3115
College Station, Texas 77845
herbert@geo.tamu.edu
979-845-2405

Appendix C - College Collateral

Fact sheet

Background on each department, orange flyers?

Division Brag Sheets - EllieV's revisions? SaraP?