TrafficCam

From Earlham CS Department
Revision as of 13:19, 2 October 2008 by Madunnh (talk | contribs) (Documentation)
Jump to navigation Jump to search

TrafficCam

Gear to record video of the pedestrian crossing and the speed of Eastbound traffic in front of Earlham on National Road West.

Research

Shopping

Current wifi card

Current battery and charge controller

Possible technologies

  • Technologic Systems single-board computer
  • WiFi interface with directional antenna
  • DRS1000 Delta speed sensor
  • Axis weatherproof camera - Consider the AXIS 211
  • POE injector - homebrew with e.g. Linksys vs one with native 12VDC input capability
  • Weatherproof case - Consider the AXIS ACH13HB, the datasheet is available at the same URL as the AXIS 211 camera (above) or the AXIS 290B
  • Mounting pole
  • Step ladder
  • Rope
  • Power Source
  • Large IDE HDD (750GB / 1TB)

Tasks

  • upgrade Stewie's HDD
  • stop webcam cron jobs
  • unmount weather cam from roof
  • prepare green pelican case
  • prepare pmp1
  • prepare wifi antenna
  • mount cam in enclosure on Dennis roof
  • update cacti hdd monitoring
  • configure stewie BIOS
  • disconnect cam in closet
  • rename new HDD on stewie
  • ask for the pmp1's EC WiFi IP to be available from off-campus
  • log power up for pmp and cam using cron
  • control wifi up/down on boot
  • camouflage / paint bright colored gear
  • port forwarding using router
  • change camera power cable
  • capture an MPG-4 / MJPEG @ 15 FPS and stream to stewie via pmp1 port 80 / 554
  • turn off one antenna on router
  • install speed sensor
  • redo camera interface to be customized for this project
  • make a custom 20 ft serial cable
  • measure power consumption of complete unit
  • deploy functional traffic cam unit

Image volume calculation

  • 60 seconds/minute x 60 minutes/hour x 24 hours/day x 7 days/week x 4.5 weeks/month x 12 months/year = 32,659,200 seconds/year
  • 1 frame/second x 20 KB/frame x 32,659,200 seconds/year = 653,184,000 KB/year or 637,875 MB/year or 623 GB/year

Software architecture:

  • Cache 2 minutes locally
  • Use infobomb stack to transfer and append to current day's movie
  • 4a-3:59a movies, sync with infobomb and roll-over, simple trac or fancydir listing by year-month

Questions for Doug

  • Interface - 1 second frames, manual video review, automated video review, speed/video correlation,
  • Overall duration, 1 year?
  • Better density

Documentation

Written By: Maduna (madunnh)

Images

Main Hardware

  • Pelican Case

Model: 1510 Pelican Case

The case houses most of the hardware of the unit. It contains the battery, power supply, charge controller, router and the single board computer. The components of the case were carefully attached using materials such as velrco, wire-ties and bolts and nuts. The case was initially used for another project (Keck Water Monitoring Project), so some of the components i.e. the battery and charge controller were already installed. The position of the charge controller was changed to a 'vertical mount' in order to make room for a secondary battery (if required) and to bring it closer to the power supply unit.

The pelican case is strong, weatherproof, durable, portable and fully customizable. One outstanding feature that it has is the pressure valve, which controls the air pressure in the case, providing a safe charging environment for the battery and prevents the case from shrinking / expanding at varying pressure levels, i.e. during a flight.

  • Battery

Model: EP2812 B.B. Battery

The battery is a 12V, 12Ah Lead-Acid rechargeable battery. It was chosen for its dimensions, capacity, operation temperature range and independent operational orientation (charges and discharges in any position). Even though the battery was not specially chosen for this project, its capacity was calculated to be sufficient for this project's hardware. The battery powers all the components of the unit.

  • Charge Controller

Model: Phocos CML10-2

This is a 10A, 12/24V charge controller specially chosen for its compatibility with the battery and ability to charge the battery using a solar panel. Due to the high power demand of the components and the significance this project, solar power was tested to be unreliable, especially at the deployment site where there are a lot of tall trees. Instead of a solar panel, a power supply was used. The charge controller regulates the battery charge, and safely powers the components at the same time.

  • Power Supply

Model: Mean Well SP-150-15

The power supply takes normal 115V AC and outputs 15V, 0~10A which is in the range of the output of a solar power panel compatible with our charge controller and battery. The deployment site is far from any buildings with a continuous supply of AC power, but luckily, there is a streetlight near by. Because the street lights use regulated power and only turn on at nighttime, the power supply charges the battery at night and then the battery powers the unit during daytime.

  • Router

Model: Linksys WRT54G

The router acts as a wireless adapter for the unit. It's firmware was upgraded to DD-WRT and it was configured to run in client mode. The router is connected to the directional wireless antenna and does port forwading to the single board computer (ports 22 [ssh] and 23 [telnet]) and the video camera (ports 80 [http] and 554 [mms]). The router was configured to connect to our local wireless network assign IP addresses to the camera and computer using static dhcp.

  • Single Board Computer

Model: TS-7260 Arm SBC

This board was chosen for most of its outstanding features, especially its wide input voltage range and robustness. Also, it is the same board being used by the water monitoring project mentioned above. The TS-7260 was nicknamed PMP6; meaning Portable Monitoring Platform #6. The pmp6 retrieves speed data from the radar and archives it in its flash memory. At regular time intervals, the pmp6 sends the data to a Host machine where it is processed and synchronized with the camera's video recording. The pmp6 uses a software stack described in detail under the client software section below.

  • Directional Antenna

Model: Hawking HAO14SDP

The outdoor di-wifi antenna as I call it, was chosen for its long range and compatibility with our router's antenna socket. (This is the right thing to say now, but the truth is that the antenna was chosen because it was compatible with our first computer; pmp1, a TS-5600 with an ORiNOCO 802.11b PCMCIA Wireless Network Card, which was not a successful approach). For more information about this Approaches, refer to the "Unsuccessful Approaches" section below.

The di-wifi antenna is connected to the router's antenna socket using a 30ft Hawking HAC30N cable (purchased separately), and replaces one of the router's stock antenna. The other router's antenna was removed and turned off using the dd-wrt software, in order to save battery power. The antenna was mounted on a post and pointed towards one of the building with a wireless access point.

  • Network Video Camera

Model: Axis 211

We own an older model a similar camera used the Weather Monitoring Project, and because of the Axis camera's features and durability, it was our #1 choice. The 211 model streams the video in mjpeg and mpeg4 formats which are both useful to us (refer to the Host Software section below). The camera can be powered using either Power Over Ethernet (POE) or a 12V DC adapter. We decided to use the 12V adapter in order to avoid complications with engineering POE and possibly borking our router and laptops during configuration, testing and debugging.

The router gives access to the camera's video stream using the already mentioned port forwarding to the Host machine and admins. The camera is connected to the battery and the router using a 25ft 2-wire cable and an Ethernet cable of the same length. These cables and the radar cable, run inside a conduit which connects the camera case to the pelican case.

  • Camera Case

Model: AXIS ACH13HB

This is the outdoor default case/housing for the camera. It has a sun shield and a heater/fan inside it, to warm/cool the camera. We are currently not using the heater/fan because the case will be well protected from the sun by shrubs and also the camera gives off enough heat to warm itself up in the cold.

The camera case is connected to the pelican case as described above. The case was modified to fit the conduit and to also attach a mounting point for the radar (see images).

  • Doppler Radar

Model: DR500C Doppler Traffic Radar

This radar was the best choice we made for the project. I has functionality and software that is beyond our use. The DR500C was chosen for its range, simple interface and most importantly for its inbuilt intelligence. It detects vehicles and calculate their speed, which can then be captured via the radar's serial interface.

The radar is powered via a specially engineered cable unit which consists of 2 serial to Ethernet adapters, a 20ft Ethernet cable, a custom made serial cable which connects the TS-7260's COM2 to one of the serial to Ethernet adapters. This custom made cable is at the pmp6-end of the connection and it also provides 12V DC to the radar via pins 1 (+12V DC) and pin 5 (Ground [-12VDC]), which is sourced from the battery via the charge controller (see images if confused). At the radar-end, the Ethernet cable is connected to the radar via the other serial to Ethernet adapter.

The radar outputs the speed of on-coming traffic as a 3-digit number to its serial console in mph. A software stack running on the pmp (see below for details) captures the speed and stores it locally.

Software

  • Host
  • Client

Access Information

  • Camera
  • PMP6
  • Sewie

Security

  • Locks
  • Camouflage
  • Shrubs

Unsuccessful Approaches

pmp6 + onrinoco wireless adaptor
IP chains/tables for routing
Delta Speed Sensor DRS1000