Difference between revisions of "Personal Projects"
Line 22: | Line 22: | ||
---- | ---- | ||
− | Phew, that was a lot of work! Dr. Doolittle knows that <i>you</i> are a computer scientist (programmer?) and thinks you may be able to simplify the process he went through. As he walks you through the process you realize that, indeed, you could write a few short programs to simplify the process. | + | Phew, that was a lot of work! Dr. Doolittle knows that <i>you</i> are a computer scientist (programmer?) and thinks you may be able to simplify the process he went through. He really hopes you are able to help because he's gotten calls for 5 more zoo crimes already!! As he walks you through the process you realize that, indeed, you could write a few short programs to simplify the process. |
First, you write a program to translate the RNA strand to the protein sequence. <i>We'll write this program.</i> | First, you write a program to translate the RNA strand to the protein sequence. <i>We'll write this program.</i> |
Revision as of 19:09, 26 October 2009
Return to Bioinformatics
Combined project!
Making life easier for a researcher: A case study
A crime scene investigator, Dr. Doolittle, is called to the scene of a gruesome murder. As he pulls into the Chicago zoo, Dr. Doolittle finds the mane attraction, a large African male lion, lying in a pool of blood. The zookeeper has isolated several suspects who were found near the scene and also covered with blood: a chimpanzee, river buffalo, opposum, platypus, and rat. The lion has unfortunately been so maimed during the attack that it is difficult to tell whether the cause of death was strangulation, crushing, or biting. Fortunately Dr. Doolittle knows that that all of the suspects' genomes have been sequenced and so he collects a sample of the blood at the scene to take back to the lab.
Dr. Doolittle centrifuges this blood sample separating it into white blood cells, buffy coat and plasma. Subsequently, he lyses the red blood cells in the plasma and extracts the total RNA. Using advance sequencing techniques, he obtains the following strand of RNA:
For this step, we will need to design a program for ourselves to reverse translate this protein sequence into a strand of mRNA to provide the students with in the case study.
protein:
VHLSGGEKSAVTNLWGKVNINELGGEALGRLLVVYPWTQRFFEAFGDLSSAGAVMGNPKV
KAHGAKVLTSFGDALKNLDDLKGTFAKLSELHCDKLHVDPENFNRLGNVLIVVLARHFSK
DFSPEVQAAWQKLVSGVAHALGHKYH
Translate this RNA sequence into an amino acid sequence and find out to which protein it corresponds by performing a BLAST search at http://services.uniprot.org/blast/
Phew, that was a lot of work! Dr. Doolittle knows that you are a computer scientist (programmer?) and thinks you may be able to simplify the process he went through. He really hopes you are able to help because he's gotten calls for 5 more zoo crimes already!! As he walks you through the process you realize that, indeed, you could write a few short programs to simplify the process.
First, you write a program to translate the RNA strand to the protein sequence. We'll write this program.
1. Open emacs. 2. Write the following program: (will be provided) 3. Input the RNA sequence. 4. Run the program. 5. Copy the protein sequence.
Next you write a program that utilizes information from both the NCBI and PDB databases to give you both the identity of the murderer and the protein structure once you provide the protein sequence. We'll write this program, too!
1. Open emacs. 2. Write the following program: (will be provided) 3. Paste the protein sequence. 4. Run the program. 5. Marvel at how much faster the process becomes.