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Abstract

It is unknown whether there is an infinite number of twin primes,
which are primes differing by two. Another question for which an
answer is known for primes, but not for the twin primes, is how they
are distributed across residue classes. There are generalized arguments
that describe when there are more primes that have one remainder
when divided by a particular number than another remainder. For
example there are more primes 1 mod 10 than 7 mod 10, that is, end
in a 1 than a 7 when written in base 10. For twin primes there are
similar questions. Are there more twin primes that end in 1 and 3 or
twin primes that end in 7 and 97 We develop an experimental method
in order to investigate this question.
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1 Introduction

1.1 The Distribution of Primes in Residue Classes

It is difficult to predict exactly where to find prime numbers. Breaking the
integers into subsets and comparing the density of primes in those subsets
gives some insight into where the primes fall within the integers. Let us look
at the natural numbers mod four. Here the prime numbers are underlined.

o v +0 =4z =0,4,8,12,16,20,24, ... = 0 mod 4

e dr+1=1,5,9,13,17,21, 25,29, 33,37, 41, 45,49, 53,57, ... = 1 mod 4
e 4z +2=2(2z+1)=2,6,10,14,18,24,28,...= 2 mod 4

o 4z+3=3,7,11,15,19,23,27,31,35,39,43,47,51,55,59, . .. = 3 mod 4

This shows the four residue classes mod 4. There is at most one prime that
is 4z + 2 or 4x + 0 because for x > 0 all of the solutions are multiples of two
or four respectively. Among the remaining residues there will be an infinite
number of prime numbers that will satisfy each equation[Dir37]. Despite this
fact, in 1853 Chebyshev noted that within these remaining residues of the
natural numbers mod four there are consistently, up to some value, more
primes that are of the form 4k 4+ 3 than 4k + 1. This can be seen by graphing
the difference between the counts of primes up to x that are 3 mod 4 and
those that are 1 mod 4 as in Figure 1. In effect this shows the distance
between the lines on a graph which represent the count of primes up to z
in a particular residue class. If this distance is ever negative it shows that
there are more primes that are in the second term of the subtraction than
in the first. The difference is consistently greater than zero meaning there
are more primes that are 3 mod 4. In fact, the first value for which the line
crosses the z-axis is 26861. Chebyshev’s bias is strong for the primes which
are 3 mod 4 over 1 mod 4, but comparing other subsets of the integers we do
not observe strong biases as in Figure 2. The bias however is never absolute.
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It is never the case that there are always more primes of one class up to some
value rather than another class[Lit14]. Both of these graphs will cross the
z-axis infinitely many times.

This question arose from Chebyshev’s experimental observation. Recently
there have been analytic results describing in general when there will be more
primes congruent to one number rather than another relative to a single
modulus|MR94]. Rather than increasing the count by one for each x value
that has more primes that are one residue mod the class modulus we increase
it by 1/x. Using this metric it has been found, under the assumption of the
Riemann Hypothesis, that whether there is a strong or weak bias is related
to whether the residues are quadratic residues for the modulus. That is, if
there exists some x, where 0 < x < m for some congruence relation modulus
m such that 22 = ¢ mod m then ¢ is a quadratic residue modulus m. There
will be more primes that are congruent to non-quadratic residues in the class
because the squares will always be congruent to quadratic residues.

This begins to scratch the surface of a description of where to look for
prime numbers. We will look at the twin primes experimentally with a similar
view.

1.2 Twin Primes

In 300 B.C.E. Euclid showed that there are an infinite number of primes.
This seems like a good place to start when attempting to describe some set
of numbers, asking “How many of them exist?”. For twin primes, primes
differing by two, nobody knows the answer to this question. Though there
have been numerous attempts, there is no complete proof that there are an
infinite number of twin primes. A basic questions about twin primes has
been left open. Giving some description of how many twin primes there are
in different residue classes seems close to giving some explanation of a set
which has elluded formal description.

We will approach this question using the weighting described by Rubin-
stein and Sarnak and determine whether we can use the same guide. Are
there more sets of twin primes in pairs of residue classes that are both non-
quadratic residues mod m than sets of twin primes which are in pairs of
residue classes that are both quadratic residues mod m?
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Figure 1: The difference between the number of primes which are 3 mod 4
and 1 mod 4 up to x
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2 Computational Methods

2.1 Atkin’s sieve

Atkin’s sieve is based on a number of theorems similar to “Some integer,p
, with unique prime factors of the form 1 mod 4 is prime if and only if the
equation 422 + y? = p has an odd number of solutions.” It uses a set of
equations like this which together describe all of the integers. Next, it de-
scribes a method for finding all solutions to the equations which is based
on algorithms for enumerating lattice points on a curve. Using these key
principles, Atkin and Berstein develop a method of enumerating all of the
primes up to some integer, n using O(m) operations and n(t/2+e()
bits[AB04]. Berstein has released an implementation of this algorithm, the
primegen|[Ber99] library which we use to generate primes.

2.2 Parallel approach

In order to decrease the time to calculate the large list of twin primes
with which will be working we use a parallel adaptation of the primegen
package. This uses principles developed for other embarrassingly parallel
applications]|WAO05]. Since sieving one block of the integers for primes does
not relate to sieving any other block of integers the integers can be split
up into sections and the sieve operation can be performed on each of these
blocks in parallel.

Each node starts and reads in a configuration file. This file specifies the
output file name, size of a work unit and the maximum value up to which we
will output twin primes. One node is started as the assignment server and
the rest as worker clients. The assignment server sends a single value to each
worker, the beginning of its work unit. A work unit consists of a portion
of the integers from the beginning of a block of integers. These blocks of
integers have a fixed size. The workers have already read in the fixed work
unit size, so a beginning of the unit is all that is needed to designate the
block on which they will sieve.

Each worker node now has a portion of the integers in which to find all of
the twin primes. Once the worker has calculated this list of twin primes in its
block it sends the list back to the assignment server. The server determines
if there are more work units to be assigned. If there are, the server will send
a new block and then write the received twin prime list to disk. If there
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Figure 4: Interactions between the assignment server and workers

are no units left the assignment server sends out a termination message. At
this point the client cleans up and terminates. If the work unit size does
not evenly divide the number up to which we are listing the twin primes the
server will finish by completing the last work unit, the only one that will not
have the same fixed size.

2.3 Speedup and Efficiency

The timing data was created on a Beowulf cluster of 10 nodes. Each node
has two 500Mhz Pentium III processors and 512MB of primary memory. The
network interface card on the nodes have a transfer rate of 100MBit/s and
the switch to which the cards are connected is a has 100MBit ports. The data
is based on an average of five runs. It is possible to manage the computation
versus communication ratio by modifying the block size. For these runs the
block size was optimized for 19 worker processors. The speedup factor is
calculated by dividing the amount of time it took to run with one worker
node by the timing data for a particular number of worker processors. The
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Figure 5: Time in seconds to calculate twin primes out to 10! for 2 to 20
processors

efficiency is the serial time divided by the run time at p processors multiplied
by p.

time for one worker

Speed =
peedup(p) time for p worker processors

time for one worker

Effici =
ciency (p) (time for p worker processors) X p

2.4 Concise Storage

Reducing the size of the data points we store in turn reduces the amount of
time taken to store the output file since disk writes are a probable bottleneck.
The assignment server stores a block of prime values when it is returned
from the prime generating clients. The clients return the twin prime list
in the format which the assignment server will store the list. Since it is
already optimized for size, it will take less time to transmit over the network.
Furthermore, the assignment server has no work to do on the data other than
putting it into a file. If the server had to processes the returned list it would
increase the time another client could be waiting to send its list. More
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Figure 7: Efficiency for 1 to 19 worker processors
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importantly, it would increase the time the client could be waiting to get
another block in which to start calculating twin primes.

The size of the storage is reduced first by storing only the smaller prime
in a pair of twin primes. We can reverse this process by simply adding 2
to the stored prime value. We know for my(n) the number of pairs of twin
primes up to n, for constants ¢ and Il,, that[Weil:

Inln
7T2(’n,) S Cﬂgﬁ(l + OTnn) ~ Cngﬁ

If we simply stored a list of smaller primes in a set of twin primes, the
prime list entries could be stored as 64 bit values, one for each pair of primes.
That is that storage(n), the number of bits needed to store the primes up to
n, is 64my(n). This is an upper bound on storage using this method.

If, however, we were to store a variable number of bits depending on the
difference between the smaller primes in two sets of twin primes we would
get a slightly lower storage size[Rie85]. That is for py, the kth first prime
in a pair of twin primes, we would store py — px_1 varying the number of
bits used based upon the value of p, — pr_1. Since the client does not know
the last prime prior to the block it is working on, the first value stored in
the list for a block would always be the actual prime value rather than a
difference of primes. In reading back the file, we must know what py_; is
before determining the value p,. This is not a problem for our purposes
since we can iterate through the list sequentially to calculate the weighted
counts of primes in residue classes.

Using the estimate of the ith prime as ¢Ini and the estimation that twin
primes are ﬁ of the standard primes, we determine that the nth twin prime
is equal to about nln(n)?. Figure 8 shows that our estimate is close up to
a constant factor. We can show the log, number of bits stored, of the sum
up to n of the differences between the kth and (k — 1)th twin prime is about

2n(In(lnn)). That is:

n

storage/ (n) = Z(ln(Pk — Pr-1)) &
k=1
Z(ln(k(ln k) — (k—1)(n(k —1))?) =~ 2n(In(In(n))
k=1
This gives us an improvement over our original method of just storing
each twin prime by about W%. We need to add a fixed width bit

In(In(n
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Figure 8: A graph of the number of actual twin primes up to our estimate of
the nth twin prime,1.5n(logn)?, shown in red. y = x is shown as a reference
in green.
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field of information for each prime record conveying how much storage it will
need. In order to accomplish this we use the first two bits of each record as
the width of the data field in the record. This gives us four possible sizes of
data fields. We chose this based on the C99 defined maximum integer value
in C, 64-bits[Int99]. Thus, we use these four possible values to represent the
record size as 8, 16, 32, or 64 bits. We must also store a fixed width block
size designator at the beginning of each block that is written to disk. This
is because we must treat the first record in each block differently since it is
not a difference of primes, but an absolute prime value. See Figure 9 for an
example of this. Note that in this example of storing two primes and a block
size designator we store only 88 bits. If we were storing the full primes we
would have to store 64 bits per prime equaling a total of 128 bits without a
designator.

A simple method for saving a constant factor would be to divide the
differences by six. Each twin prime is either 1 mod 6 or 5 mod 6. We know
that the smaller of the twin primes will always be 5 mod 6 so looking at
the difference between the lesser of the twin primes: (6z + 5) — (6y +5) =
6x — 6y = 6(x —y) = 0 mod 6. Thus, six will divide the difference evenly.

3 Results

3.1 Methods of Generating Graphs

In order to generate weighted counts for the data we produced using the
parallel algorithm we must first sort the returned data. Since it was returned
from the workers as it was produced it is not guaranteed to be in order
already. One node may have other processes taking up CPU cycles which
would mean that though it received a block first it may not return its data
until much later.

To sort the data we run through the prime list, looking at the beginning
of blocks. From that data we produce an list of block headers which contain
the first prime in the block, an absolute prime value, the size of the block
and the file position of the block header. We can then sort this list of headers
in memory by the first prime in the block. If we iterate over this sorted list,
pick out file positions, and read from the file, we get the sorted list of twin
primes.

The weights are calculated using the MPFR, multi-precision floating point
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rounding, [Tea05] library. This allows us to make the precision of the calcu-
lated weights a parameter to the analysis program. Rather than calculate
1/z for each = where there are more primes in one class than another we
approximate the sum of the 1/x values between two primes with integration
and get the result:

Pk+1

1 1.1 1
S~ ~ In(per) — n(p) + 5 (— — ——
o (Pr+1) (k) 2(pk pk+1)

This replaces a number of operations required to calculate the weight at
each prime number which was O(pyy1 — px) with constant time. Figure 10
shows that the estimated weight is close to the actual weight.

3.2 Validation and Verification

The results of the estimated weights were verified to ensure that the esti-
mates being made followed the actual data being produced. The weight
estimation equation was validated by graphing the output of the normal
weighting[MR94] and the estimated weighting using thirty decimal positions
of precision. These graphs looked close for all of the tests we performed. We
were able to compare the graphs as far out as 107. After this the analysis
would take a long time without the estimation.

Other methods were used to validate the code meaning looking for logic
errors that may produce erroneous output. This was done through empirical
analysis of the output. In order to validate the production of the correct
twin primes we first compared small output values to those produced by
code written to generate twin primes in Maple. This code was serial and
considerably less complex and thus less prone to error. For the large values
we compared the counts of twin prime numbers up to various values, again
using Maple and verified that various output values were in fact twin primes.

The weight calculations were validated by stepping through the code with
a debugger and comparing the output to hand calculated weighted outputs
from Maple. The final graphs were compared for small values to graphs
generated in Maple.
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sum of = (bottom).
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Figure 11: Counts of twin primes that are 1 mod 8 and 3 mod 8 versus those
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Figure 12: Counts of twin primes that are 1 mod 8 and 3 mod 8 versus those
that are 7 mod 8 and 1 mod 8
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3.3 Generated Graphs and Analysis

The results of this project are inconclusive. The twin primes are sparse
amongst the primes, a set which is already sparse in the integers. In order to
get good data it will require going further out along the integers. The data
for the counts of twin primes that are 1 mod 8 and 3 mod 8 versus those that
are 3 mod 8 and 5 mod 8 seems to be consistent with our expectations1112.
The quadratic residues mod 8 are 0, 1, and 4. The count of set twin primes
that has an element that is 1 mod 8 seems to be much lower than the set of
twin primes in which there is no element congruent to a quadratic residue.
This seems to hold for many of the output graphs. Though, counts of twin
primes that are 1 mod 8 and 3 mod 8 versus those that are 7 mod 8 and
9 mod 8 seem to not coincide with expectations. Note that 1 = 9 mod 8 and
1 is a quadratic residue. It would seem that since both of these sets of twin
primes have an element that is always a quadratic residue we would see them
being somewhat equal, but for a large portion of the graph the primes that
are 1 mod 8 and 3 mod 8 seem to be ahead. This trend seems to be leveling
off as they come close at the end, but this is far from conclusive. More tests
need to be run with different moduli and going further out along the number
line.
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